VIDEO PLAYLIST LINK: parkermaths.com/link/functionsplaylist

TYPES OF NUMBER | KEY FACTS

- Natural numbers (N) are positive whole numbers.
- \blacktriangleright <u>Integers</u> (\mathbb{Z}) are <u>positive</u> and <u>negative</u> whole numbers, including <u>zero</u>.
- <u>Rational numbers</u> (Q) are numbers that can be <u>expressed as fractions</u>.
- » <u>Real numbers</u> (\mathbb{R}) extend the rational numbers to include <u>irrational numbers</u> (e.g. $\sqrt{2}, \ \pi, e$)

MAPPINGS AND FUNCTIONS | KEY FACTS

- A <u>mapping</u> defines a relationship between a set of input values and output values.
- A <u>function</u> is a mapping where <u>each input maps to a single output</u>.

Domain and Range | Key Facts

- > The *domain* of a function is the *set of input values* for which it is defined.
- The <u>range</u> of a function is the <u>set of possible output values</u>.

FUNCTION NOTATION | KEY FACTS

TYPES OF MAPPING | KEY FACTS

- One-to-one function: Each input value generates a <u>unique output value</u>.
- Many-to-one function: <u>Two or more input values</u> can generate the <u>same output value</u>.
- One-to-many mapping: <u>Each input value</u> can generate more than one output.

A ONE-TO-ONE FUNCTION HAS NO TURNING POINTS IN THE SPECIFIED DOMAIN.

o <u>One-to-Many</u> mappings are <u>not functions</u>.

HORIZONTAL AND VERTICAL LINE TESTS | KEY FACTS

HORIZONTAL LINE TEST:

- Draw a set of horizontal lines
- If any line crosses the curve more than once, it is *not* a one-one function. VERTICAL LINE TEST:
- > Draw a set of vertical lines
- If any line crosses the curve more than once, it is not a function.

DOMAIN AND RANGE | EXAMPLE 1

(a) Find the greatest possible domain for the function $k: x \mapsto \frac{1}{x+5} + 2$

(b) State the range of k(x).

Sketch the graph of y = k(x) on the axis provided.

Domain and Range | Example 3

A function g is defined such that $g(x) = x^2 - 6x + 8$, $x \in \mathbb{R}$.

(a) Sketch the graph of y = g(x), indicating all intercepts and stationary points.

Domain and Range | Problem 3

(b) State the range of g.

A function $\, {\rm h}\,$ is defined such that $\, {\rm h}(x) = -x^2 - 4x + 5\,$, $\, x \in \mathbb{R}$.

(a) Sketch the graph of y = h(x), indicating all intercepts and stationary points.

(b) State the range of $\,h\,.$

. .

D- - -

PARKER

The functions $ { m f}, { m g}$ and $ { m h}$ are defined as follows:	
$f(x) = 2x - 3$, $x \in \mathbb{R}$, $g(x)$	$h(x) = 4x^2$, $x \in \mathbb{R}$, $h(x) = \frac{1}{x}$, $x \neq 0$, $x \in \mathbb{R}$
(a) Find $fg(x)$.	(b) Find $gf(x)$.
Usu	JALLY, $fg(x) \neq gf(x)$
(c) Find $hfg(2)$.	(d) Find $fgh(3)$.
Most of the time	IT IS EASIER TO SUB IN THE VALUE FIRST
(e) Find f ² (4).	(f) Find $g^2h(2)$.
	$f^2(x) - ff(x)$
Inverse Functions Key Facts	$\Gamma(x) = \Pi(x)$
 Only one-one functions have an inverse. 	
A function and its inverse are related as follows:	
Somain of $f \Leftrightarrow Range of f f Range of f \Leftrightarrow Doma$	In of f T The graph of f $f(x)$ reflects the graph $f(x)$ in the line $y = x$
function f is defined by $f(x) = 2e^{5x} + 7$, $x \in \mathbb{D}$	
relation 1 is defined by $\Gamma(x) = 2e^{-1} + 1^{-1}$, $x \in \mathbb{R}$.	A function g is defined by $g(x) = \sqrt{2x^2 - 5}$, $x \ge \sqrt{2.5}$, $x \in \mathbb{R}$
a the inverse function I .	(a) Find the inverse function g ⁻¹ .

INVERSE FUNCTIONS | EXAMPLE PROBLEM PAIR 2

Given that
$$h(x) = \frac{2x+1}{x-3}$$
 , $x \neq 3$, $x \in \mathbb{R}$

Find the inverse function $\,h^{^{-1}}\,.$

A function g is defined by $k(x)=\frac{2-5x}{3x+1}$, $x\neq -\frac{1}{3}$, $x\in \mathbb{R}$.

Find the inverse function k^{-1} .

INVERSE FUNCTIONS | EXAMPLE PROBLEM PAIR 3

Given that $g(x) = x^2 + 2x + 3$, $x \ge -1$, $x \in \mathbb{R}$.

(a) By completing the square, find the range of g(x)

Given that $h(x) = 2x^2 + 8x - 5$, $x \le -2$, $x \in \mathbb{R}$.

(a) By completing the square, find the range of h(x)

(b) State the greatest possible domain of $g^{-1}(x)$.

(c) State the range of $g^{-1}(x)$.

(d) Find the inverse function $g^{-1}(x)$.

(b) State the greatest possible domain of $\, {\rm h}^{\scriptscriptstyle -1}(x)$.

(c) State the range of $\,{
m h}^{-1}(x)$.

(d) Find the inverse function $\,{
m h}^{-1}(x)$.

TO FIND THE INVERSE OF A QUADRATIC FUNCTION, COMPLETE THE SQUARE